
April, 2002 

Hooray for Arrays! 

With some VFP 7 enhancements, arrays are more useful than ever 

I've been programming computers for a long time, and I've worked in 

a number of different programming languages. One feature offered by 
virtually every language I've used is arrays, ordered collections of 

elements that let you address a bunch of items by a single name.  

FoxPro, of course, is no exception and, in the years I've been using it, 

the capabilities of FoxPro's arrays have been enhanced repeatedly. 
There are quite a few functions for managing arrays, lots of ways to 

move data between arrays and tables, and a whole bunch of functions 
that collect some information and put it into an array. 

VFP 7 includes some key additions to array functionality, and several 
more "dump it into an array" functions. I'll take a look at both kinds of 

enhancements in the article to show you why arrays are more valuable 
than ever. 

One exciting new capability is returning entire arrays from methods. 

Since I covered that in the March ADVISOR Answers column, I won't 
go over it again here. 

Sorting and Searching 

Sorting and searching within arrays are pretty fundamental operations. 

In fact, the first Fox article I ever published showed how to sort and 
search efficiently in FoxBase+ arrays. Then, in FoxPro 2, the ASort() 

and AScan() functions entered the language and we didn't have to 

worry about how to do these tasks ourselves. 

However, until VFP 7, both of these functions had key weaknesses. 

Both were case-sensitive, making it difficult to work with character 
data. In addition, AScan() could search a subset of the array, but you 

couldn't limit it to a particular column. In VFP 7, these issues, along 
with a couple of others, are addressed and make ASort() and AScan() 

more useful than ever. 

ASort() has only one change, so let's look at it first. There's one new 

parameter-a flag that indicates whether the sort is case-sensitive or 
case-insensitive. The complete syntax is: 

nSuccess = ASORT( ArrayName [, nStart [, nElements  



                 [, nOrder [, nFlag ] ] ] ] ) 

As in older versions, the nStart and nElements parameters indicate 
what part of the array is sorted. nStart serves double-duty here. Not 

only does it indicate the first element to include in the sort, but the 
array is sorted on the column that element resides in . nElements also 

has two interpretations; its meaning depends on whether the array is 
one-dimensional or two-dimensional. For a one-dimensional array, 

nElements indicates the number of elements (items) to be sorted, 
beginning with nStart. For a two-dimensional array, nElements is 

interpreted as the number of rows to sort, starting with the row that 
contains element number nStart.  

nOrder, which determines whether the sort is ascending or 
descending, is pretty counter-intuitive. Omit it or pass a positive 

number to sort in descending order; pass 0 or a negative number for 

an ascending sort.  

Finally, we come to the new parameter. It's actually quite simple. Omit 

the parameter or pass 0 for the same old case-sensitive sort. Pass 1 
for a case-insensitive sort. 

But what if you want to do a case-insensitive sort of the entire array? 
What do you do about the parameters between ArrayName and nFlag? 

While you can figure out the right values and pass them, there's an 
easier way. Pass –1 for any of those parameters (nStart, nElements or 

nOrder) and you get the default behavior for that parameter.  

To set up some test data, we'll use another new feature of VFP 7. 

ADIR() now has an optional parameter that lets you retrieve file names 
in their original case. This line fills an array with information about the 

files in the Tools\Filer subdirectory of the VFP home directory: 

nFileCount = ADIR( aFileList, HOME()+"Tools\Filer\*.*", ; 
                   "", 1) 

In my installation, that directory has only 4 files, and the first column 
of the array contains the following: 

filer.dll 
Filer.ico 
filer.sct 
filer.scx 

(By coincidence, these files are already sorted as we want them, but in 
an application, we can't count on that.) 

If we sort without the nFlag parameter, like this: 



ASORT( aFileList ) 

the file "Filer.ico" comes to the top of the list because of the capital 
"F". To get the desired results, add the new parameter, like this: 

ASORT( aFileList, -1, -1, -1, 1 ) 

AScan(), for searching within arrays, has two new parameters, but 

they add a whole bunch of new capabilities. Here's the updated 
syntax: 

nResult = ASCAN( ArrayName, uSearch [, nStart [, nElements  
                 [, nColumn [, nFlags ] ] ] ] ) 

The second parameter, uSearch, is the item you're searching for. As 
with ASort(), nStart and nElements determine which portion of the 

array is searched; you can pass –1 to indicate the default values. 

The new nColumn parameter provides the ability to search within a 
single column. If you want to search only in the name column of the 

aFileList array created above, you can use code like this, adding the 
column number to the parameter list: 

cFileToFind = "filer.scx" 
nFoundWhere = ASCAN( aFileList, cFileToFind, -1, -1, 1 ) 

The nFlags parameter is, as its name suggests, an additive, bit-
oriented flag. It provides three new capabilities: case-insensitive 

searching, control over exact searching, and returning the row rather 
than the element number. 

The case-sensitivity flag uses bit 0 (the right-most bit), so you add 0 

to keep the default case-sensitive search or 1 for case-insensitive 
search. 

The two bits to the left of the first flag are involved in the process of 
determining EXACT matches. By default, AScan() follows the SET 

EXACT setting in effect. The new flags let you decide whether to do 
that or to control EXACTness locally, just for this function call. Bit 2 

determines whether we're controlling EXACTness locally – add 0 to 
leave SET EXACT in charge, or 4 to control it locally. Bit 1 indicates 

which EXACTness setting we want to use locally – add 0 for EXACT OFF 
or 2 for SET EXACT ON. The setting of bit 1 matters only when bit 2 is 

set, that is, when you add 4 to the flag. 

By default and in all earlier versions of VFP, AScan() returns the 

element number of the found item. In a two-dimensional array, you 



usually want to know which row the item is in, rather than its actual 

element number. Often, you'll want to look up another item in the 
same row. With AScan()'s new ability to search in a particular column, 

this use of the function is likely to be even more common. Moving left 
again, bit 3 of nFlags determines what the function returns – add 0 for 

the element number or 8 for the row number. 

All in all, there are 16 possible values for nFlags. (Because of the 

interaction between the two bits used for EXACTness, there are 
actually 12 different functionalities.) Table 1 shows the various 

options. 

Table 1. Fine-tuning AScan(). The nFlags parameter makes AScan() do what you 
want. 

nFlags 

Value 

Meaning 

0 or 2 Case-sensitive, use SET EXACT setting, return element 

number 

1 or 3 Case-insensitive, use SET EXACT setting, return 

element number 

4 Case-sensitive, EXACT OFF, return element number 

5 Case-insensitive, EXACT OFF, return element number 

6 Case-sensitive, EXACT ON, return element number 

7 Case-insensitive, EXACT ON, return element number 

8 or 10 Case-sensitive, use SET EXACT setting, return row 

number 

9 or 11 Case-insensitive, use SET EXACT setting, return row 
number 

12 Case-sensitive, EXACT OFF, return row number 

13 Case-insensitive, EXACT OFF, return row number 

14 Case-sensitive, EXACT ON, return row number 

15 Case-insensitive, EXACT ON, return row number 



For example, if you want to find the row that contains the exact 

filename "Filer.SCX", but without worrying about case, you'd use this 
code: 

nMatchRow = ASCAN( aFileList, "Filer.SCX", -1, -1, 1, 15) 

On the other hand, if you want to find the row containing the first item 

in the array that has "filer" in its name, regardless of case, use: 

nMatchRow = ASCAN( aFileList, "filer", -1, -1, 1, 13) 

The new capabilities of AScan() make a lot of tasks easier and cleaner. 
There are a couple of more detailed examples later in this article. 

Tell Me About Yourself 

VFP has a large group of functions that collect some information and 
put it into an array. In VFP 7, the group is even larger with six new "A" 

functions. Table 2 shows the new functions and explains each one's 
purpose.  

Table 2. Fill 'er up–These new functions each fill an array with specified data. 

Function Resulting array contains a list of: 

ADLLs() API functions currently declared. 

ALanguage() Elements of the VFP programming language. 

AProcInfo() The components of a specified program file. 

ASessions() Active data sessions. 

AStackInfo() The current call stack. 

ATagInfo() Index tag information for a specified table. 

 

Like the other functions of this type, all of these return the number of 
rows (for two-dimensional arrays) or items (for one-dimensional 

arrays) in the result. 

Tracking API Functions 

ADLLs() takes a single parameter–the array to fill. The resulting array 

has one row for each currently declared API function. There are three 



columns in the array: the name of the API function, the alias with 

which it was declared, and the path and filename of the containing 
library. 

The new features of AScan() combine nicely with ADLLs() to write a 
new function that returns the alias with which a particular function was 

declared, or the empty string if that function isn't currently declared. 
Here's the function, included on this month's Professional Resource CD 

as DLLAlias.PRG: 

*==================================================== 
* Program:            DLLALIAS.PRG 
* Purpose:            Return the alias with which a  
*                     function was declared. 
* Author:             Tamar E. Granor 
* Copyright:          (c) 2001, Tamar E. Granor  
* Last revision:      12/18/01 
* Parameters:         Name of the function to look up 
* Returns:            The alias with which the function  
*                     was declared; the empty string,  
*                     if the parameter is no good 
*                     or the function isn't declared 
*==================================================== 
LPARAMETERS cFunction 
 
ASSERT VARTYPE(cFunction) = "C" AND NOT EMPTY(cFunction) ; 
  MESSAGE "DLLAlias: Must pass function name" 
 
IF VARTYPE(cFunction) <> "C" OR EMPTY(cFunction) 
  RETURN "" 
ENDIF 
 
LOCAL nDLLCount, aDLLList[1], nItem, cAlias 
 
nDLLCount = ADLLS( aDLLList ) 
nItem = ASCAN( aDLLList, cFunction, -1, -1, 1, 14) 
IF nItem = 0 
  cAlias = "" 
ELSE 
  * Grab the defined alias for the function 
  cAlias = aDLLList[ nItem, 2 ] 
ENDIF 
 
RETURN cAlias 

To call DLLAlias(), pass the name of the API function you're interested 
in. Keep in mind that API functions are case-sensitive, so the search 

performed in DLLAlias() is also case-sensitive. Here's an example call: 

* Most likely, you'd have a line like this earlier 
* in your code: 
DECLARE INTEGER GetSysColor IN Win32API INTEGER nIndex 



 
* Then, to determine the alias: 
cGSCAlias = DLLAlias( "GetSysColor" ) 
 

Listing Language Elements 

ALanguage() extracts various kinds of language elements and puts 

them into an array. The function takes two parameters: the array to 
fill and a number indicating which type of language elements to find. 

Table 3 shows the possible values of the second parameter and the 
results. 

Table 3. What's in a Language?–ALanguage() puts various language elements into an 
array. 

Second 

parameter 

Result 

1 One-dimensional array with a command in each 
element 

2 Two-dimensional array with one row per function. The 
first column contains the function name. The second 

column has three pieces of information, in the form 
"M9-9". If the letter "M" is present, the function name 

can't be abbreviated. The first number indicates how 

many parameters the function requires. The second 
number is the total number of parameters the function 

accepts. For example, for ACOPY(), the second column 
contains the string "2-5". 

3 One-dimensional array with a base class in each 
element. 

4 One-dimensional array with a DBC event in each 

element. 

 

I haven't found a use for this function yet. 

Auditing Program Files 

AProcInfo() is one of several new functions related to the Document 

View and Task List tools. It accepts two or three parameters: the array 
to populate, the name of the file to examine, and optionally, a number 



indicating what information to extract from the file. Table 4 shows the 

possible values for the third parameter, and the results in each case. 

Table 4. What's in a program file?–AProcInfo() lets you find various components of 
.PRG files. 

Third 
parameter 

Number of 
columns in 

results 

Contents of array 

0 or omitted 4 Name, line number, type of item and 

indentation for each procedure/function, 

class, method or compiler directive in 
the file. 

1 4 Class name, line number, parent class 
name, and OLE public status for each 

class in the file. 

2 2 Name (in the form "class.method") and 
line number for each method in the file. 

3 3 Name, line number and type of item for 
each compiler directive in the file. 

 

Although Document View works with all kinds of code, whether it's in 
program files, class libraries, forms or stored procedures, AProcInfo() 

works only for program files (.PRG). The information it provides gives 
you a good picture of the file contents, and is sufficient to use the new 

EditSource() function to open the file to a particular location.  

You might use the data collected by AProcInfo() in a documentation 

utility. As a starter, you could use ASort() to put the items in 
alphabetical order like this. 

* cFile = file name to audit 
nItems = APROCINFO( aFileItems, cFile ) 
* Sort on name, case-insensitive 
IF nItems > 0 
   ASORT( aFileItems, 1, -1, 0, 1 ) 
   * More processing 
ENDIF 

Your code might then dump the data into a table or cursor, or perhaps 
process it one at a time, sending different item types into different 

tables.  



Listing Data Sessions 

Certain situations call for code that goes through each active data 
session, and processes the tables open in that session. For example, 

when an error occurs that's serious enough to shut down the 
application, you want to minimize the loss of data. There are also 

times when you want to close a table everywhere it's open and be able 
to reopen it. ASessions() makes both of these scenarios possible. 

At first glance, the function results seem trivial. There's one item in 

the array for each active data session, containing the data session 
number. In simple cases, that means that element 1 contains 1, 

element 2 contains 2, and so forth. However, the way data session 
numbers are handed out means the results of ASessions() aren't 

always just numbers in order.  

Data session numbers are assigned in ascending order as data 

sessions are opened. However, when a data session is closed, other 
active sessions are not renumbered. (Good thing.) That means there 

can be holes in the sequence. (In addition, available numbers are re-
used, so if data session number 3 is closed, the next new data session 

created gets the number 3.)  

Since there can be arbitrarily many active data sessions, looping 

through all possible data session numbers doesn't work, and the 
possibility of holes in the sequence means that you can't just loop until 

you find an unused data session number. ASessions() solves both 

these problems. You're most likely to use it in code that looks 
something like this: 

LOCAL nSessions, nWorkAreas, aSessionList[1], aCursors[1] 
LOCAL nSession, nOldSession, nCursor, nOldWorkArea 
 
* Get a list of sessions 
nSessions = ASESSIONS( aSessionList ) 
nOldSession = SET("DATASESSION") 
 
FOR nSession = 1 TO nSessions 
   SET DATASESSION TO nSession 
 
   * Get a list of open tables 
   nWorkAreas = AUSED( aCursors ) 
   nOldWorkArea = SELECT() 
   FOR nCursor = 1 TO nWorkAreas 
      * Do something to the table in this work area 
   ENDFOR 
   SELECT (nOldWorkArea) 
ENDFOR 



 
SET DATASESSION TO nOldSession 

The "something" in the inner loop might be reverting changes and 

closing the table, checking whether the work area contains a particular 
table and doing something in that case, and so forth. 

Tracking the Program Stack 

AStackInfo() is primarily a debugging aid. It provides programmatic 
access to information that's available in the Debugger. The array 

created by AStackInfo() has six columns, as shown in Table 5. 

Table 5. What's running?–AStackInfo() fills an array with the program stack, 
containing this information for each active routine. 

Column Contents 

1 The stack level. 

2 The name of the file executing at this level. 

3 The name of the module or object executing at this level. 

4 The name of the source code files for the code executing at 
this level. 

5 The line number executing at this level. 

6 The line of code executing at this level. 

 

The most obvious use for this function is in error handlers, where you 
can collect the call stack data and store it in an error log. The task of 

figuring out what went wrong is much easier with complete stack 
information. You might do something like this: 

* Collect stack info 
LOCAL aProgStack[1], nLevels, nLevel, cStackInfo 
nLevels = ASTACKINFO( aProgStack) 
cStackInfo = "" 
FOR nLevel = 1 TO nLevels 
   cStackInfo = cStackInfo + "Stack level " + ; 
                      TRANSFORM( aProgStack[nLevel, 1]) ; 
                      + ": " 
   cStackInfo = cStackInfo + aProgStack[nLevel, 2] + ", " 
   cStackInfo = cStackInfo + aProgStack[nLevel, 3] + ", " 
   cStackInfo = cStackInfo + aProgStack[nLevel, 4] + ", " 



   cStackInfo = cStackInfo + "Line " + ; 
                      TRANSFORM( aProgStack[nLevel, 5] ) ; 
                      + ": " 
   cStackInfo = cStackInfo + aProgStack[nLevel, 6] + CHR(13) 
ENDFOR 

Then, you can store the accumulated string into a memo field in the 
error log. 

AStackInfo() does have one problem. When you call it from a form or 
class within an .APP or .EXE, the second column contains the name of 

the .SCT or .VCT for the form or class. It should contain the .APP or 

.EXE name. 

Collecting index information 

The final new "A" function, ATagInfo() puts all the data you need to 
recreate the index tags for a table into an array. The array has 6 

columns, as shown in Table 6. 

Table 6. What's in a tag?–The array created by ATagInfo() contains the information 
you need to recreate index tags. 

Column Contents 

1 Tag (or IDX) name 

2 Tag type ("PRIMARY", "CANDIDATE", "REGULAR", 

"UNIQUE") 

3 Key expression 

4 Filter expression 

5 "ASCENDING" or "DESCENDING" 

6 Collate sequence 

 

In addition to storing metadata to allow tags to be recreated, 

ATagInfo() also makes it much easier to determine whether a tag with 
a particular key exists. In earlier versions of VFP, this task requires 

brute force. With ATagInfo() and the new parameters to AScan(), it's a 
breeze. This function is available on this month's PRD as 

KeyExists.PRG. 

  



*======================================================== 
* Program:           KEYEXISTS.PRG 
* Purpose:           Determine whether a table has a 
*                    specified key expression 
* Author:            Tamar E. Granor 
* Copyright:         (c) 2001, Tamar E. Granor  
* Last revision:     12/20/01 
* Parameters:             
*    cKeyExpr = the key expression to look for 
*    cIndexFile = the index file to search in (optional) 
*    uWhatTable = the alias or work area to search  
*                 in (optional) 
* Returns:         .T., if the key exists;  
*                  .F., if parameters are bad  
*                       or the key doesn't exist 
*======================================================== 
LPARAMETERS cKeyExpr, cIndexFile, uWhatTable 
    
LOCAL ARRAY aTagList[1] 
LOCAL nTagCount, nResult 
 
* Check key expression parameter 
IF VARTYPE( cKeyExpr ) <> "C" OR EMPTY(cKeyExpr) 
   ERROR 11 
   RETURN .F. 
ENDIF 
 
* Check index file parameter 
DO CASE 
CASE VARTYPE( cIndexFile ) = "L" AND NOT cIndexFile 
   * default to all open indexes 
   cIndexFile = "" 
CASE VARTYPE( cIndexFile ) <> "C" 
   ERROR 11 
   RETURN .F. 
OTHERWISE 
   * all is well. No change needed 
ENDCASE 
 
* Check table parameter 
DO CASE 
CASE VARTYPE( uWhatTable ) = "L" AND NOT uWhatTable 
   * default to current table, if anything is open 
   IF NOT EMPTY(ALIAS()) 
      uWhatTable = ALIAS() 
   ELSE 
      ERROR 52 
      RETURN .F. 
   ENDIF 
CASE VARTYPE( uWhatTable ) = "C" 
   * check that the specified alias is in use 
   IF NOT USED( uWhatTable ) 
      ERROR 13 
      RETURN .F. 
   ENDIF 



CASE VARTYPE( uWhatTable ) = "N" 
   * check that the specified workarea is in use 
   IF NOT USED( uWhatTable ) 
      ERROR 52 
      RETURN .F. 
   ENDIF 
OTHERWISE 
   * Not a valid type 
   ERROR 11 
   RETURN .F. 
ENDCASE 
 
* If we get this far, we have good parameters 
* So get a list of tags 
nTagCount = ATAGINFO( aTagList, cIndexFile, uWhatTable ) 
 
* Now search for specified expression 
IF nTagCount > 0 
   nResult = ASCAN( aTagList, NORMALIZE(cKeyExpr), -1, -1, 3, 6 ) 
ELSE 
   * There was no such index file as specified 
   nResult = 0 
ENDIF 
 
RETURN nResult > 0 

You might want to modify the function to return the name of the tag 

that has the specified key rather than just a logical value indicating 
whether it exists. 

Tell Me More About Yourself 

In addition to all the new "A" functions, several existing functions that 
fill arrays have been enhanced in VFP 7. The details are beyond the 

scope of this article, but be sure to check Help for ADir(), ALines(), 
AMembers(),  and ANetResources() to see how they've been improved.  

Better and Better 

VFP 7 continues the trend that started in FoxPro 2.0 of making arrays 
more and more useful in each version of VFP. If you haven't worked 

much with arrays, spend some time with the relevant Help topics or 
take a look at Miriam Liskin's article in the April '98 issue and I'm sure 

you'll see a number of ways you can take advantage of them in your 
applications. 


